

Mechanical Face Drivers with Vibration Damping System SM Series

Constant reference point + vibration damping

In the BRUCKNER face driver the advantages of mechanical compensation are combined with the vibration damping of hydraulics. VDS - the vibration damping system - prevents the driving pins from undue wear and tear, extends the life of the turning tools and protects the headstock bearings. High cutting forces are safely transmitted.

The design

Concept of the BRUCKNER face driver:

- ▶ Vibration damping
- ► Slim design, no constrictions in the working area
- ► Minimum overhang
- ► Available with Morse taper or for flange-mounting for flanges to DIN or special flanges
- ► Turning range from 6 mm to 162 mm
- ► Runout max. 0.02 mm

Application: turning applications. Cylindrical grinding applications must be examined in each case.

Direction of rotation on the machine spindle

right-hand right-and left-hand left-hand

during operation. Result:

- ► Longer life of driving pins and turning tools
- ► Improved workpiece surfaces due to smooth running

Constant point of reference

The high-speed steel driving pins are supported by a hardened sphere segment within the basic body. Advantage:

- ► Exact lengthwise turning. Out-of-square workpiece faces are compensated for.
- ► High operating safety

Spring-loaded centrepoint

Compensates for varying depth of centrebores

Easy pin changing

The driving pins and the centrepoint can be taken out from the front. The flats on the side of the pins enable the user to easily extract them with a screwdriver.

Clamping in chuck jaws

Using the external diameter provided

Symmetrical form

Form AS, form BS 1, form BS 2, form CS for right- and left-hand rotation during the same turning operation.

Saw-tooth form

Form C for right- or left-hand rotation by turning the cutting edge by 180°. Forms AR and BR for right-hand rotation, forms AL and BL for left-hand rotation.

Symmetrical form

Form AS, form BS, form CS for right- and left-hand rotation during the same turning operation.

Mechanical face driver with vibration damping system

Basic body, with centrepoint and draw-off nut, without driving pins

Туре	ID. No.	Morse taper	D	DB	DG	DF	LD	LF	LS		ID. No.
	6712	2	3	6	29	52	66	34	8		671 AS
SMK	6713	3	3	6	29	52	66	34	8		671 BS1
SIVIK	6714	4	3	6	29	52	66	34	8		671 BS2
	6715	5	3	6	29	52	66	34	8		671 CS
										I.	*To be ground to
	6722	2	6	6	29	52	64	32	6		672 AL/AR/AS
SMM	6723	3	6	6	29	52	64	32	6		672 BL/BR/BS
	6724	4	6	6	29	52	64	32	6		672 C/CS
	6725	5	6	6	29	52	64	32	6		012 0/00
	6733	3	12	8	43	70	78	46	7		673 AL/AR/AS
SMM	6734	4	12	8	43	70	79	46	7		673 BL/BR/BS
	6735	5	12	8	43	70	81	46	7		673 C/CS
											674 AL/AR/AS
SMM	6744	4	20	10	60	86	89	56	8		674 BL/BR/BS
Omm	6745	5	20	10	60	86	91	56	8		674 C/CS
											0/4 6/63
	6755	5	25	18	90	110	126	78	13		675 AL/AR/AS
SMM	6756	6	25	18	90	110	131	78	13		675 BL/BR/BS 675 C/CS

Driving pins

ID. No.	Turning range	Clamping-Ø
671 AS	6-10	5,8
671 BS1	9-13	8
671 BS2	12-16	11
671 CS		*
* To be ground to	suit specific diam	eters
672 AL/AR/AS	13-20	12
672 BL/BR/BS	17-40	16
672 C/CS	21-50	20
673 AL/AR/AS	22-38	21
673 BL/BR/BS	27-62	25
673 C/CS	32-77	31
674 AL/AR/AS	33-58	31
674 BL/BR/BS	40-92	37

46-112

42-90

54-132

66-162

45

41

53

65

Version for flange-mounting, with centrepoint, without driving pins

Туре	ID. No.	D	DB	DG	DF	LC	LF	LS
	6710	3	6	29	160	117	92	8
	6720	6	6	29	160	115	90	6
SMF	6730	12	8	43	160	115	90	7
	6740	20	10	60	160	115	90	8
	6750	25	18	90	160	119	99	13

Driving pins

	ID. Numbers and ranges see tables above	
671	AS/BS1/BS2/CS	
672 673 674 675	AL/AR/AS/BL/BR/BS/C/CS	

Intermediate flanges

DIN	ID. No.	Size	DF	d1	LZ
55026-A	6705.26	5	160	82.563	25
55026-A	6706.26	6	160	106.375	25
55026-A	6708.26	8	210	139.719	30
55026-A	6711.26	11	280	196.869	35
55027	6705.27	5	160	82.563	25
55027	6706.27	6	160	106.375	25
55027	6708.27	8	210	139.719	30
55027	6711.27	11	280	196.869	35

Others flange versions on request

Workpiece weight max.

ID. No.	max. daN (1daN = 1.02 kp)
6712 to 6715, 6710	20
6722 to 6725, 6720	25
6733 to 6735, 6730	40
6744, 6745, 6740	70
6755, 6756, 6750	120

Spare centrepoints

Version	ID. No.	Ø	length
671	671ZS	6	50
672	672ZS	6	50
673	673ZS	12	70
674	674ZS	20	90
675	675ZS	25	127

Selecting the driving pins				
ID. No. face driver	ID. No. pins			
eg. 673 4 Morse taper	673 - BL/BR/BS pin form			

Criteria for the determination of the tailstock force \textbf{F}_{Δ}

Tensile strength of material

The diagram is valid for a material with a tensile strength of up to 700N/mm². The tailstock force must be increased by 10% for every additional 100N/mm².

Number of cutting tools

When using several cutting tools the cutting diameters have to be added up.

Mode of operation

Depending on the method of working, the tailstock force F_A is to be multiplied with the following factors:

Mode of operation	factor
feed against headstock	1.0
feed against tailstock	2.0
recessing	1.5

Calculation example

cutting depth a = 5 mmfeed per revolution s = 0.3 mm

chip section $q = a \times s$ = 5 mm x 0.3 mm = 1.5 mm²

turning diameter D = 100 mm clamping diameter \$ = 45 mm

clamping ratio $\frac{D}{\$} = \frac{100 \text{ mm}}{45 \text{ mm}} = 2.2$

Tailstock force $F_A = 530 \text{ daN}$

When using symmetrical driving pins the tailstock force must be increased by approx. 20%

BRUCKNER face driver HS with hydraulic compensation, working range up to 500 mm

- ► Precision face driving with high load transmission
- ► Large working range by interchangeable carrier knives
- ► Even contact of the carrier knives by hydraulic compensation
- ► Transmission of high torques
- ➤ Vibration compensation by means of the hydraulic, by that, the knife-edges do not notch early.
- ► Eccentricity max. 0.02 mm
- ► Maintenance-free hydraulic through spring initial tension
- ► Application: turning

Karl Bruckner GmbH Präzisionswerkzeugfabrik

Bruckwiesenstrasse 13 71384 WEINSTADT GERMANY Phone +49 (0) 7151 9671-0 Fax +49 (0) 7151 9671-23

info@karlbruckner.de www.karlbruckner.de

> ...also in our programm

High performance live centres

High performance bullnose live centres

High performance live centres for heavy-duty machining

Carbide dead centres

Tool steel dead centres

CARBIDOR® coated tool steel dead centres

Face drivers with hydraulic compensation

Tailstock sleeves

Work drivers

Special designs